Diagram Techniques for Confluence
نویسندگان
چکیده
We develop diagram techniques for proving confluence in abstract reductions systems. The underlying theory gives a systematic and uniform framework in which a number of known results, widely scattered throughout the literature, can be understood. These results include Newman's lemma, Lemma 3.1 of Winkler and Buchberger, the Hindley Rosen lemma, the Request lemmas of Staples, the Strong Confluence lemma of Huet, the lemma of De Bruijn. ] 1998 Academic Press
منابع مشابه
Coherence and Confluence
Proofs of coherence in category theory, starting from Mac Lane’s original proof of coherence for monoidal categories, are sometimes based on confluence techniques analogous to what one finds in the lambda calculus, or in term-rewriting systems in general. This applies to coherence results that assert that a category is a preorder, i.e. that “all diagrams commute”. This note is about this analog...
متن کاملA Prover for the μ CRL Toolset with Applications —
This document describes an automated theorem prover, based on an extension of binary decision diagrams. The prover transforms quantifier-free formulae into equivalent BDD-forms, w.r.t. to some algebraic data specification. The prover is used by four tools for the symbolic analysis of distributed systems specified in μCRL (i.e. process algebra plus algebraic data types). The main techniques are ...
متن کاملUntyped Confluence In Dependent Type Theories
We investigate techniques based on van Oostrom’s decreasing diagrams that reduce confluence proofs to the checking of critical pairs in the absence of termination properties, which are useful in dependent type calculi to prove confluence on untyped terms. These techniques are applied to a complex example taken from practice: a faithful encoding in an extension of LF with rewrite rules on object...
متن کاملar X iv : m at h / 05 06 31 0 v 1 [ m at h . C T ] 1 5 Ju n 20 05 Coherence and Confluence
Proofs of coherence in category theory, starting from Mac Lane’s original proof of coherence for monoidal categories, are sometimes based on confluence techniques analogous to what one finds in the lambda calculus, or in term-rewriting systems in general. This applies to coherence results that assert that a category is a preorder, i.e. that “all diagrams commute”. This note is about this analog...
متن کاملModularity of Constructive Confluence
We prove modularity of constructive confluence for term rewriting systems using a novel decomposition of terms into tall aliens and bases. The proof is modular itself in that it factors through the decreasing diagrams theorem for abstract rewriting systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 141 شماره
صفحات -
تاریخ انتشار 1998